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Application of Dynamic Programming to Optimizing the
Orbital Control Process of a 24-Hour Communication Satellite

Joy A. BurkHART* AND FrEDERICK T. SMmIiTHT
The Rand Corporation, Santa Monica, Calif.

This paper discusses a method for optimizing an orbital control process for a 24-hr commu-
nication satellite. The process is concerned with transferring a satellite from its injected
orbit to a hypothetical point moving in a nearby specified reference orbit. The reference
orbit considered here is a circular, equatorial orbit with a period of one sidereal day. The
optimization of this transfer process is accomplished by applying the techniques of dynamic
programming. This essentially involves treating the orbit transfer as a multistage decision
process and finding the optimal set of velocity vector increments to be applied to the satellite
to accomplish the desired transfer subject to a constraint on the mass of fuel used. The nu-
merical results indicate that the linearity assumptions and the iteration technique involved
in the computation of the velocity vector increments are entirely satisfactory.

I. Introduction

HIS paper is concerned with the optimization of an orbi-

tal control process for a 24-hr communication satellite.
It is assumed that the satellite will be the intermediate
terminal of a communications link employing narrow-beam
fixed antennas at either end. The satellite is to be placed in
a circular, equatorial orbit, with a period of one sidereal day
and maintained in this orbit within tolerances sufficiently
small to enable the ground antennas to observe it at all times
over a specified orbital lifetime. Orbital control is the process
of placing the satellite in the required orbit within specified
tolerances and maintaining it there.

Because of errors in the ascent guidance system, the satellite
will be initially injected into an orbit that is slightly elliptie,
slightly inclined to the earth’s equatorial plane, slightly dis-
placed from its desired position over the equator, and having
an incorrect period. The orbital control process to be dis-
cussed is concerned with refining this preliminary orbit on
the basis of observations made after the final termination of
thrust for the ascent phase.

After the desired orbit has been achieved, the orbital con-
trol process will be required to correct periodically for the
perturbing effects of the gravitational attractions of the sun
and moon and distortions in the shape of the earth. These
effects produce secular and periodic changes in the two-body
parameters which cause the orbital eccentricity and inclina~
tion to depart from zero (or near zero). This results in a
periodic wandering motion of the satellite within the volume
of space common to the cones of view of the terminal an-
tennas. The amplitude of this wandering motion gradually
increases due to the gravitation perturbations until, during
part of the day, the satellite moves outside of the cones of
view of the antennas. In addition, secular effects due to
any small error in orbital period cause the periodic wandering
motion pattern to drift along the equator. Further, be-
cause of distortions of the earth’s gravitational field in the
equatorial plane, a resonance effect exists which can cause
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large deviations of the satellite from the desired position in
the equatorial plane.! :

The control process to be deseribed is concerned with mini-
mizing the errors in the three orbital parameters considered
most significant. The most important error is in the length
of semimajor axis a. An error in this parameter causes a
secular drift of the satellite which, if left uncorrected, can
carry it completely out of the antenna cones of view. An-
other significant orbital parameter error is the inclination
of the orbital plane with respect to the equator. This error
tends to grow due to the perturbing effects of the sun and
moon. The average position of the satellite is also important
if the periodic wandering motion is to stay entirely within the
antenna cones of view. It is the sum of the squares of the
errors in these three orbital parameters that the orbital con-
trol system attempts to minimize. The orbital control
process is also designed to limit the amount of fuel consumed.

The complete guidance process, the mathematical relation-
ships involved, and some details of simulating its operation
on a digital computer are described in Ref. 2. This paper
extends the work of Ref. 2 and discusses a different technique
for the orbit transfer computation process. The orbit trans-
fer process discussed here is formulated in terms of two-body
orbital parameters and optimized by the techniques of dy-
namic programming. The orbit transfer process discussed
in Ref. 2 is formulated in terms of inertial rectangular co-
ordinates with no attempt to optimize.

In the discussion to follow, the equations of motion in
terms of two-body orbital parameters are presented, the
dynamic programming equations are given, and the integra-.
tion of the orbital transfer process into the complete guidance
loop is described. In See. VII, the numerical results for
some typical cases are discussed, and some factors are pointed
out which influence the design of a practical system.

II. Equations of Motion

For the 24-hr satellite the effects of perturbing forces will
be small over the total time interval of the multistage orbit
transfer process, and, consequently, the motion of the satellite
may be assumed to follow a Keplerian ellipse during short
periods of zero thrust. Such an ellipse is defined by a set of
six orbital parameters. These parameters define the size
and shape of the orbit, its orientation in inertial space, and
the position of the satellite in the orbit with respect to time.

There are many possible sets of these orbital parameters.
The set chosen here is particularly well suited for nearly
circular orbits slightly inclined to the equator. These param-
eters and their use in astrodynamical computations are dis-
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cussed in Ref. 3. They are a, ¢ cosEy, ¢ sink;, and the com-
ponents of Us and V; where}.

a semimajor axis

e = eccentricity

E, = value of eccentric anomaly at t = &

U, = a unit vector directed from the center of force along
the radius vector to the satellite at ¢ = ¢,

a unit vector 90° ahead of Uy in the orbital plane

Vo

The system state variables may be the six two-body orbital
parameters defining the Keplerian two-body orbit along which
the satellite moves while no thrust is applied. When a thrust
vector is applied to the satellite, the state variables change
continuously with time until the thrust is terminated. Thus,
the state variable concept provides a convenient way of
describing orbit transfer processes, since a set of six numerical
values assigned to these parameters defines a particular
Keplerian orbit.

When the difference between the orbital parameters for the
initial and terminal orbits of the orbit transfer process is
small, it is more convenient to define the state variables as the
deviations of the actual orbital parameters from the desired
terminal orbit parameters, i.e.,

Apy = pr — o

where Apy, pr, and p, are 6 X 1 vectors. The components
of pr and po are the six two-body orbital parameters for the
terminal and initial orbits, respectively.

Instead of using three components of AU, and AV, as the
two-body orbital parameters, the parameters Afly, A, and
Aw, may be used.?  These three parameters represent the
small rotations of the actual orbit about the unit vectors
U,, Vo, and W, which are required to rotate these unit vectors
into coincidence with the corresponding unit vectors of the
specified terminal orbit (Fig. 1). These small rotations are
defined by?

Ay = W-AVy, = -V AW
Ay = Uy AW = —W- AU,
Ay = V- AUy = —Uy- AV,
where the unit vector W is defined by
W =0, XV,

The state vector for the orbit transfer process may then be
given by§
Ap = [Aqa,Ale cosEy), Ale sinFy), Adiy, Avp, At} 7

The orbit transfer process is described by considering the
two-body orbital parameters as state variables. Therefore,
it is necessary to obtain the equations of motion of the satel-
lite in terms of these parameters as variables. The desired
set of equations is obtained by starting with the equations of
motion in terms of inertial rectangular coordinates and using
the method of variation of parameters. The derivation for
the set of orbital parameters just discussed is carried out in
considerable detail in Ref. 4. The resulting set of equations
is given in Fig. 2.

The equations of motion are nonlinear, and the orbital
parameters enter into the matrices in a rather involved man-
ner. However, for a multistage orbit transfer process, it
may be assumed that the duration of each application of
thrust is short relative to the orbital period and that the
actual changes in the orbital parameters are small during any
particular stage. When these conditions hold, the matrices
may be considered constant during any one stage of the
process.

1 Only three of the six components of U, and V, need be
known since these unit vectors satisfy Up-V, = 0, Up-Up =
1 =V,-V

§ The superseript 7' denotes the transpose of a vector.
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Fig.1 Coordinate systems.

For the orbital transfer process considered in this paper,
the system state veetor is given by

Ap = [Aa,Ai, Awy]T

The eccentricity is assumed zero in the equations in Fig, 2,
and these equations are modified by neglecting A(e cosEy)
and A(e sin Ey) and replacing Ad, and Az by Ai. For the
state variables Aa, A7, and A, the resulting vector-matrix
differential equation is given in Fig. 3.

III. Optimization of the Orbit Transfer Process

The process to be discussed involves transferring the satel-
lite from some initial orbit, resulting from the injection
cut-off conditions of the ascent phase, to a specified terminal
orbit. This transfer process is assumed to consist of a se-
quence of discrete thrust vectors applied to the satellite.
Each thrust vector transfers the satellite from one two-
body orbit to another. Therefore, during the process the
satellite moves from its initial two-body orbit through a
series of intermediate two-body orbits until the specified
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Fig. 2 Elliptic orbit equations.
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Fig. 3 Differential Equations in terms of a, i, and A,.

terminal two-body orbit is reached. Kach time interval of
thrust application together with any time interval of zero
thrust immediately preceding it is a stage of the process.
Since the transfer process consists of a sequence of such
stages, it is considered a multistage process.

Optimization of the general multistage orbit transfer proc-
ess represents an N-dimensional minimization problem. A
solution by classical minimization techniques requires solv-
ing N simultaneous equations. The use of dynamie pro-
gramming can reduce the N-dimensional problem to N one-
dimensional problems.® This makes the optimization prob-
lem much easier to solve. Further, when the system differ-
ential equations of motion are linear and the specified system
performance index is quadratic, an analytic solution that in-
cludes certain types of constraints can be obtained.

The multistage process considered in this paper is optimized
by choosing a sequence of vector increments to be added to the
satellite’s initial velocity vector in such a way that the speci-
fied system performance index is minimized. This process
is carried out by first optimizing a oune-stage process. Using
Bellman’s principle of optimality, a two-stage process is
optimized and generalized to an N-stage process. *

For brevity of notation, let the subseript k& denote the
conditions at the end of the kth stage of the process. The
state of the system at the end of the (¥ + 1)th stage is then
given by

Drer = P + AiAV,

Subtracting pr from both sides of the forementioned equation,
multiplying through by —1, and noting that

Ap; = pr — p; , N —1

the state transformation equation is obtained for each stage
of the process:

j=0,...

AP/;+1 = Apk — A:AV,

This is the form of the state transformation equation to be
used where matrix A; is evaluated according to the state of
the system at the end of the kth stage. The state trans-
formation equation for the three state variables of the orbit
transfer process under consideration is given in explicit form
in Fig. 4. The three components of the incremental ve-
locity vector AV are resolved along the unit vectors U, V, and
W as indicated by the subscripts. The unit vector U is
directed from the center of force to the satellite and rotates
with it in the orbital plane. The unit vector V leads U by
90° in the orbital plane. The unit vector W is normal to the
orbital plane (Fig. 1).

A performance index of a physical system is usually some
measure of the deviation of the actual performance of the
system from the desired or idealized performance The per-

Ag
. . . . AL
Fig. 4 State transformation equation for Aa, Ai,
and Aw,.
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formance index generally includes the effects of one or more
constraints on system behavior which prevent the idealized
performance from being obtained. System performance is
optimized by minimizing the deviation of the actual per-
formance from the ideal performance. For the orbital
transfer process under consideration, idealized performance
constitutes driving the terminal errors in the three state
variables to zero.

A constraint placed on the process requires that the sum
of the squares of the magnitudes of the velocity vector
increments during the transfer process be limited. This
restriction is equivalent to limiting the mass of fuel consumed
during the orbit transfer process.

The equation for the system performance index for an N-
stage process based on the forementioned requirements is
given by

JIn[Ape; AVe, ..., AVy_] = ApyTQunApy +

N-1

A DD AVTAY,

E=0
where the first term on the right represents the sum of the
weighted squares of the orbital parameter errors at the ter-
mination of the process, and the second term represents the
constraint on fuel consumption. The numerical value of the
constant A depends upon the upper bound assumed for fuel
mass. The matrix @y weights the squares of the terminal
errors in the three state variables, and Apw is given by the
state transformation equation.

ApN = APN-1 - AN—lAVN—I

where Apy_4 1s the state at the start of the final stage of the
process.

System performance is optimized by choosing the set of
AV vectors which minimizes the expression J x[Apy; AV, .. .,
AVx]. This choice is made by applying the technique of
dynamic programming,.

If the state transformation equation is linear and if the
system performance index is quadratic, it is possible to derive
analytically certain matrix recurrence relations that link the
various stages together. Begin with some definitions. Let
the function fx(Ape) be defined by the following: fx(Ape)
is the cost of an orbit transfer process of N-stages duration,
with the initial state Ap,, and an optimum control policy
being used. This function is the minimized performance
index. An optimum control policy is the set of AV vectors
minimizing the performance index Jy. By means of the
principle of optimality, a recurrence relation can be derived
from this definition of fx(Apo).

In terms of the orbit transfer problem, the principle of
optimality may be stated as follows’: an optimal sequence
of incremental velocity vectors AV, AVy, ..., AVy_ has
the property that whatever the initial state Aps may be
and whatever choice is made for AV, the remaining sequence
AVy, ..., AVy_; must constitute an optimal sequence with
regard to the state Ap; resulting from the choice of AV,.
One is initially confronted with an N-stage process starting
from state Apy. The choice of AV, transforms the system
to some state Ap;, and an (N — 1)-stage process remains.
The minimized performance index for the (N — 1)th stage
starting from state Ap, is fx—1 (Ap:y) or, by the state trans-

B - - -
0 2Qy 0 AVy
I
- 0 Q Cos Uy av
g1k k-l v
-2 [I-Cos (u-uo)k_,] [3(u-u°)k_|—4 Sin (u-uo)k_l] 0 AVw
dy- L B

AP APy~ Ag-y BV
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formation equation, fy—1 (Apy — AoAVy). Thus, the re-
currence relation for the N-stage process is

min
Iu(Apg) = AV, {)\AVOTAVO + faa(Apo — 4o AVO)}
f1(Apy) = ApoT Qo Apo N=223 ...

In the explicit form this recurrence relation becomes a set
of matrix recurrence equations. These equations, which
are derived in detail in Refs. 6 and 7, are given by!

QNfr = QN~r+1 - QTN—r+1AN—~r[(ATN-r QN—T+1AN—T +
)\13) —I]T ATy, QN—r+1

AVu_y = (AT0—y Qu_r1s Anv—r + M) 7P ATy X
Qn—rp1 APy

ApN——r = Apzv—r—l — Ay AVy_ry
ranN[Apo; AV(], eey AVN-l] = APOTQQ Apo
where r = 1, N

It may be observed that the minimum value of Jx depends
only upon the initial state Ap, and the number of stages
through the matrix @;. The A matrix changes from stage
to stage as the system state and the time vary.

IV. Integrating the Optimum Orbit. Transfer
Process with the System Control Loop

A funectional block diagram for the control loop operation is
given in Fig. 5. The “orbit transfer computation” block
shown in the diagram represents the computation of cor-
rective accelerations, in accordance with the optimization
process described in Sec. IT1.

Since the function of the guidance process is to match closely
both the position and velocity of a satellite with a hypo-
thetical point (or satellite) moving in the reference orbit,
the system must first determine some measure of the position

1 These equations apply to both the three-dimensional and
six-dimensional cases.

Fig. 6 Functional block diagram for orbit

T A

Apy Py transfer optimization process.
Bpg" Bp,
W

Approximation Wo

System
State Vectors
Apk

and velocity errors of the actual satellite with respect to the
reference satellite. The correction of the orbit transfer
process requires a knowledge of these errors in the form of
six orbital parameter errors Ap. Therefore, the first step
in the guidance process is to transform the desired error
measurements to this form. The input for the system con-
sists of 2m (m > 3) observation residuals formed from m
ground observations of azimuth and elevation angles. In
direct contrast to conventional astronomical usage, these
residuals have been defined to correspond to correction of the
observed values to match the reference values. Theoretically,
only six observation residuals are required for the determina-
tion of the six orbital parameter errors. However, greater
accuracy may be achieved by taking more than six residuals
and using least squares techniques. The basic relationship
between the residuals and parameter errors may be expressed
in vector-matrix form as shown in Fig. 5.

The inputs to the “orbit transfer computation’ are the six
orbital parameter corrections plus six constants needed in the
dynamic programming routine. This routine is an iterative
process for calculating the optimal set of incremental veloeity
vectors for transferring the satellite to the reference point.
These corrective velocity vectors, which constitute the input
to the “orientation reference” block in Fig. 5, are to be applied
to the satellite for 1-min durations at equally spaced time
intervals. The “orientation reference” or attitude control
system determines the direction of each thrust. The applica-
tion of these corrective velocity increments to the satellite
completes the orbit transfer process. In a real case the re-
quired orbit corrections are determined by taking a set of
ground observations. The determination of these corrections
in the simulated problem, however, requires a precise solution
of the equations of motion. The output of the “equations
of motion” block shown in Fig. 5 will be in the form of posi-
tion and velocity components of the satellite with respect to
the inertial coordinate system. These are then transformed
into azimuth and elevation angles from which the residuals
and the orbital parameter corrections are computed.
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Fig.7 Change in Aa during orbit transfer process.

V. Computational Procedure for Orbit Transfer
Optimization Process

A functional block diagram for the N-stage orbit transfer
optimization process is given in Fig. 6. This diagram repre-
sents the “orbit transfer computation” block in Fig. 5. The
input to this process is the system state vector Ap, determined
by the differential correction process based on observations
of the actual satellite position. In order to use the dynamic
programming routine, however, one must also have informa-
tion about the other N — 1 intermediate states of the system
during the N-stage transfer. Since the nature of this prob-
lem requires the use of dynamic programming in an iterative
process; a rough estimate of these state vectors suffices to
start the procedure.

From the estimated Ap vectors, the auxiliary param-
eters u, u, @, and n may be computed for each state, giving
sufficient information for evaluating the 4 matrices. These
are then used in the @ matrix recurrence relation in Sec. I
to determine the set of Q matrices. When the two sets of
matrices have been evaluated, the velocity vector incre-
ments may be computed by alternately solving the equations
for AV and Ap for each stage in the process. For the nu-
merical problem to be considered, the recurrence relations
are three-dimensional so that the computed Ap vectors are
3 X 1 vectors of the form

Ap = [Aa,At,Aw,]T

However, it is also necessary to compute the corresponding
6 X 1 Ap vector for each stage in the form

Ap = [Aa,Ale cosEy),Ae sinky), Atly, Ay, Athy]T

since five of these original parameter errors are used in the
auxiliary parameter computation. Therefore, once a set
of AV vectors is obtained, the next iteration may be prepared
for by evaluating the set of 6 X 3 matrices (Fig. 2) to be used
with the incremental velocity vectors in the state trans-
formation equation#

Apk+1 = Aplc_Ak AV
k=0,...,N—2

in order to determine the new set of 6 X 1 system state
vectors. These latter values replace the original estimates
and become the initial conditions for the next iteration.
The optimal set of incremental velocity vectors may be
found by repeating the process until the difference from one
iteration to the next is negligible.

The “coordinate transformation” block shown in Fig. 6
involves the transformation of the N incremental velocity
vectors whose components are referred to the U, V, W co-
ordinate system (Fig. 1) to N acceleration vectors whose
components are referred to the inertial coordinate system.

# Eccentricity is set equal to zero in the matrices in Fig. 2.

Stoge number

Fig. 8 Change in Ay during orbit transfer process.

As shown in Fig. 6, this “coordinate transformation” com-
pletes the “orbit transfer computation’ and provides the in-
put to the “orientation reference’ block (Fig. 5).

VI. Discussion

The dynamic programming computational procedure was
tested for convergence by comparing the system state vectors
at each stage for successive iterations. The numerical re-
sults indicate that the parameter errors Aa and A, at each
stage of the process converge by the second iteration. More
specifically, the values of these variables at each stage for
the second and third iterations agree to five significant figures
or to 1078, The parameter error Ai, on the other hand,
does not converge with succeeding iterations but, rather,
alternately approaches two different sets of values. This is
due to a computational difficulty for orbits with small in-
clinations, since for these orbits any slight correction in As
may cause a drastic shift in the position of the node. The
amount of this shift is impossible to predict with any accuracy
since the function is so poorly defined for small changes in
Az, As a result, one cannot predict the values of the angles
uo (and u) for each stage. This causes a difficulty in com-
puting the set of values for AV, and consequently for Az.**

In addition to the convergence test, an investigation was
made to determine the effect of the linearization assumptions
on the accuracy of the dynamic programming solution.
This was done by comparing the final set of system state
vectors computed by the dynamic programming routine
with the true values determined by the precise numerical
integration of the two-body equations of motion. Figures
7 and 8 show that for the parameter errors Aa and A, the
dynamic programming solution agrees with the actual satel-
lite solution to three significant figures or to 1075 and 107,
respectively. Figure 9, on the other hand, shows that the

24

20 =103
— Dynamic programming
x Integration of equations of motion

Aix 103

: .
o] 2 4 © 8 0 2 14 I3 18 20
Stage number

Fig.9 Change in Ai during orbit transfer process.
** By using the equations for A, and Ap, from Fig. 2 instead of

the equation for A7, this computational problem could be elim-
inated.
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dynamic programming and satellite solutions for A¢ agree
to a point and then begin to diverge. It can be shown, how-
ever, that this divergence is due to a computational problem
concerning A7 and is not a result of the linearization assump-
tions.

8 The satellite orbit resulting from injection conditions is
determined by a differential correction process.® The azi-
muth and elevation angle observation residuals are expressed
as linear combinations of the deviations of the actual orbital
parameters from the corresponding parameters of the refer-
ence orbit. The coefficients of the orbital parameter devia-
tions (or corrections) are the first-order partial derivatives
from Taylor’s series expansions of the azimuth and elevation
angles in terms of small changes in the orbital parameters of
the reference orbit. These derivatives are numerically
evaluated for the orbital parameters of the reference orbit and
the observation time associated with the particular observa-
tion residual represented. Because of the omission of higher-
order derivatives, the size of the observation residuals that
this correction process can handle is limited.

The curves in Fig. 10 indicate that there is an optimum
time interval in which to make the observations. The exist-
ence of this optimum observation period arises from two
separate effects:

1) Computational round-off and observational errors be-
come more significant for short observation periods.

2) Drift of the satellite away from the desired reference
position causes the observation residuals to become too large
for the useful linear range of the process for long observation
periods.

Figure 10 indicates an optimum observing period of ap-
proximately 270 min for the initial orbit used to obtain the
data. A special initial orbit with zero error in the semimajor
axis (i.e., no drift) indicated that the error ratio did not ex-
hibit a minimum but continued to decrease slowly with an
increasing observation period.

Figure 11 gives a plot of mass ratio against time in years
to drift 5° in longitude. The mass ratio is defined by

Wy _ mass of fuel consumed
W,  initial mass of vehicle plus fuel

LY ar
1—exp<—— k)
9 =

Il

where

gl 0.009344679 earth radii/min
| AV:| = magnitude of velocity increment acquired during
(k + 1)th stage

The curves in Fig. 11 were computed as follows: by letting
the Lagrange multiplier A increase in the system performance
index, the sum of the squares of the magnitudes of the ve-
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o
S
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Fig.13 Error ratio vs number of stages in the process.
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process over a five-stage process.

locity vector increments is weighted more and more heavily
in the minimization process at the expense of increased
terminal errors. This, in essence, means that as A is in-
creased, less fuel is used during the orbit transfer process,
but the terminal errors are larger. The larger the terminal
errors, the larger the secular drift due to the error in the
semimajor axis, and the shorter the duration of time to drift
through 5° of longitude. The two ecurves in Fig. 11 do not
include the effect of differential correction process errors.
These errors do not significantly affect the mass ratios but
do greatly increase the drift rate. Thus, the principal effect
of the differential correction errors will be to compress the
curves in a direction parallel to the time axis. It should be
pointed out that correcting only Aa and Aw, by the orbital
control process consumes less fuel than attempting to correct
the initial errors in all six orbital parameters.

VII. Practical Considerations Concerning
System Design

An obvious problem in the design of a hardware system to
mechanize the orbit transfer process is how many stages to
use. The data in Figs. 12 and 13 indicate that both the mass
ratio and the error ratio decrease as the number of stages in-
creases for a given value of A.

The data in Fig. 11 have been replotted in Fig. 14 to show
the increase in useful orbital lifetime for a specified available
mass ratio by increasing the number of stages in the process
from 5 to 25. Useful orbital lifetime is defined as the time
in years to drift 5° in longitude from the desired point over
the equator. Figure 14 indicates that a 25-stage process
has little advantage over a five-stage process for small mass
ratios. However, permitting the mass ratio to increase from
0.004 to 0.005 gives a much larger increase in the useful orbi-
tal lifetime with a 25-stage process than with a five-stage
process. It should be remembered that any point on this
curve is determined by adjusting the value of N in the com-
putation of the set of optimum velocity vector increments
applied to the satellite to accomplish the orbit transfer. It
should also be remembered that Fig. 14 does not include
differential correction process errors. These errors will tend
to reduce the useful orbital lifetime,

behave during the orbit transfer process when the number of
stages exceeds 20. This suggests that the performance of a
process with 20 or more stages begins to approximate closely
the performance of a continuous process. This immediately
raises a question concerning the possible superiority of a
continuous process over a discrete process. The behavior
of the magnitude of the velocity vector increment with time
is shown in Fig. 15. The vertical segments of the staircase
curves for the 10- and 30-stage processes actually have a
finite slope. The period of thrust during each stage is as-
sumed to exist for 1 min.

An estimate of the time behavior of the magnitude of vector
AV is indicated by the dot-dash curve in Fig. 15 for the case
where the number of stages becomes infinite, i.e., the con-
tinuous process. The maximum acceleration for each case
is indicated on the figure. For the eontinuous thrust curve
it is the slope of its curve through the origin. For the dis-
continuous cases it is the maximum veloeity increment divided
by 1 min. Clearly, the continuous thrust case has a big ad-
vantage in regard to the acceleration that the satellite is
subjected to during the orbit transfer process. From the
forementioned discussion it appears that the continuous
process offers an improvement over a discrete process from
the standpoint of accuracy, fuel economy, and lower aceelera-
tion during the orbit transfer,
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